Linked List

Data Structure 2019. 2. 13. 23:00


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <stdio.h>
#include <algorithm>
#include <list>
#include "Windows.h"
using namespace std;
 
struct NODE {
    int prev;
    int next;
    int val;
};
 
const int NODE_SIZE = 30000;
 
//TEST CMD
const int PUSH_BACK = 0;
const int PUSH_FRONT = 1;
const int INSERT = 2;
const int POP_BACK = 3;
const int POP_FRONT = 4;
const int ERASE = 5;
 
int test_cmd[NODE_SIZE][3];
 
struct MY_LIST {
    int HEAD = NODE_SIZE;
    int TAIL = NODE_SIZE + 1;
    int pos;
    NODE node[NODE_SIZE + 2];
 
    MY_LIST() {
        pos = 0;
        node[HEAD].next = TAIL;
        node[TAIL].prev = HEAD;
    }
 
    void push_back(int data) {
        int prev = node[TAIL].prev;
        int next = node[prev].next; // TAIL;
 
        node[pos].val = data;
 
        node[pos].prev = prev;
        node[prev].next = pos;
 
        node[pos].next = next;
        node[next].prev = pos;
        ++pos;
    }
 
    void push_front(int data) {
        int next = node[HEAD].next;
        int prev = node[next].prev; // HEAD
         
        node[pos].val = data;
 
        node[pos].prev = prev;
        node[prev].next = pos;
 
        node[pos].next = next;
        node[next].prev = pos;
        ++pos;
    }
 
    void insert(int p, int data) {
        int next = node[HEAD].next;
        for(int i = 0; i < p; ++i) {
            next = node[next].next;
        }
        int prev = node[next].prev;
     
        node[pos].val = data;
 
        node[pos].prev = prev;
        node[prev].next = pos;
 
        node[pos].next = next;
        node[next].prev = pos;
        ++pos;
    }
 
    void pop_back() {
        int target = node[TAIL].prev;
 
        int prev = node[target].prev;
        int next = node[target].next;
 
        node[prev].next = next;
        node[next].prev = prev;
    }
 
    void pop_front() {
        int target = node[HEAD].next;
 
        int prev = node[target].prev;
        int next = node[target].next;
 
        node[prev].next = next;
        node[next].prev = prev;
    }
 
    void erase(int p) {
        int target = node[HEAD].next;
        for (int i = 0; i < p; ++i) {
            target = node[target].next;
        }
        int prev = node[target].prev;
        int next = node[target].next;
 
        node[prev].next = next;
        node[next].prev = prev;
    }
};
 
MY_LIST my_list;
list<int> stl_list;
 
int main()
{
    // make test case..
    int cur_size = 0;
    for (int i = 0; i < NODE_SIZE; ++i) {
        if (i < NODE_SIZE / 3) {
            test_cmd[i][0] = rand() % 2;
        }
        else {
            test_cmd[i][0] = rand() % 6;
        }
 
        switch (test_cmd[i][0]) {
        case PUSH_BACK:
        case PUSH_FRONT: {
            test_cmd[i][1] = rand();
            ++cur_size;
            break;
        }
        case INSERT: {
            test_cmd[i][1] = rand() % cur_size;
            test_cmd[i][2] = rand();
            ++cur_size;
            break;
        }
        case POP_BACK:
        case POP_FRONT: {
            --cur_size;
            break;
        }
        case ERASE: {
            test_cmd[i][1] = rand() % cur_size;
            --cur_size;
            break;
        }
        }
    }
 
    // test my list
    int my_list_begin = GetTickCount();
    for (int i = 0; i < NODE_SIZE; ++i) {
        switch (test_cmd[i][0]) {
        case PUSH_BACK: {
            my_list.push_back(test_cmd[i][1]);
            break;
        }
        case PUSH_FRONT: {
            my_list.push_front(test_cmd[i][1]);
            break;
        }
        case INSERT: {
            my_list.insert(test_cmd[i][1], test_cmd[i][2]);
            break;
        }
 
        case POP_BACK: {
            my_list.pop_back();
            break;
        }
        case POP_FRONT: {
            my_list.pop_front();
            break;
        }
        case ERASE: {
            my_list.erase(test_cmd[i][1]);
            break;
        }
        }
    }
    int my_list_end = GetTickCount();
 
    // test stl list
    int stl_list_begin = GetTickCount();
    for (int i = 0; i < NODE_SIZE; ++i) {
        switch (test_cmd[i][0]) {
        case PUSH_BACK: {
            stl_list.push_back(test_cmd[i][1]);
            break;
        }
        case PUSH_FRONT: {
            stl_list.push_front(test_cmd[i][1]);
            break;
        }
        case INSERT: {
            list<int>::iterator it = stl_list.begin();
            for (int k = 0; k < test_cmd[i][1]; ++k) {
                ++it;
            }
            stl_list.insert(it, test_cmd[i][2]);
            break;
        }
 
        case POP_BACK: {
            stl_list.pop_back();
            break;
        }
        case POP_FRONT: {
            stl_list.pop_front();
            break;
        }
        case ERASE: {
            list<int>::iterator it = stl_list.begin();
            for (int k = 0; k < test_cmd[i][1]; ++k) {
                ++it;
            }
            stl_list.erase(it);
            break;
        }
        }
    }
    int stl_list_end = GetTickCount();
 
    //time compare
    printf("my list : %d\n", (my_list_end - my_list_begin));
    printf("stl list : %d\n", (stl_list_end - stl_list_begin));
 
    //result test
    list<int>::iterator it = stl_list.begin();
    int cur = my_list.node[my_list.HEAD].next;
    while (it != stl_list.end()) {
        if (*it != my_list.node[cur].val) {
            printf("Error\n");
        }
        ++it;
        cur = my_list.node[cur].next;
    }
 
    return 0;
}


Merge Sort

Data Structure 2019. 2. 10. 23:43



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <stdio.h>
#include "Windows.h"
#include <algorithm>
using namespace std;
 
const int MAX_SIZE = 500000;
 
int arr_size;
int ms[MAX_SIZE], qs[MAX_SIZE], stls[MAX_SIZE], buf[MAX_SIZE];
 
void merge_sort(int* p, int len) {
    if (len < 2) return;
    int i, j, k, mid;
    mid = (len / 2);
    i = 0, j = mid, k = 0;
 
    merge_sort(p, mid);
    merge_sort((p + mid), (len - mid));
 
    while (i < mid && j < len) {
        if (p[i] < p[j]) {
            buf[k++] = p[i++];
        }
        else {
            buf[k++] = p[j++];
        }
    }
 
    while (i < mid) {
        buf[k++] = p[i++];
    }
 
    while (j < len) {
        buf[k++] = p[j++];
    }
 
    for (int i = 0; i < len; ++i) {
        p[i] = buf[i];
    }
}
 
void qsort(int* p, int left, int right) {
    if (left >= right)   return;
    int l = left - 1;
    int r = right + 1;
    int mid = p[(l + r) / 2];
    while (1) {
        while (p[++l] < mid);
        while (p[--r] > mid);
        if (l >= r)  break;
        int temp = p[l];
        p[l] = p[r];
        p[r] = temp;
    }
    qsort(p, left, l - 1);
    qsort(p, r + 1, right);
}
 
 
int main()
{
    arr_size = MAX_SIZE;
 
    for (int i = 0; i < arr_size; ++i) {
        ms[i] = rand();
        qs[i] = stls[i] = ms[i];
    }
 
    int quick_sort_begin = GetTickCount();
    qsort(qs, 0, arr_size - 1);
    int quick_sort_end = GetTickCount();
 
    int merge_sort_begin = GetTickCount();
    merge_sort(ms, arr_size);
    int merge_sort_end = GetTickCount();
 
    int stl_sort_begin = GetTickCount();
    sort(stls, stls + arr_size);
    int stl_sort_end = GetTickCount();
 
    printf("my quick sort : %d\n", (quick_sort_end - quick_sort_begin));
    printf("my merge sort : %d\n", (merge_sort_end - merge_sort_begin));
    printf("stl sort : %d\n", (stl_sort_end - stl_sort_begin));
    printf("=====================================\n");
 
    quick_sort_begin = GetTickCount();
    qsort(qs, 0, arr_size - 1);
    quick_sort_end = GetTickCount();
 
    merge_sort_begin = GetTickCount();
    merge_sort(ms, arr_size);
    merge_sort_end = GetTickCount();
 
    stl_sort_begin = GetTickCount();
    sort(stls, stls + arr_size);
    stl_sort_end = GetTickCount();
 
    printf("my quick sort : %d\n", (quick_sort_end - quick_sort_begin));
    printf("my merge sort : %d\n", (merge_sort_end - merge_sort_begin));
    printf("stl sort : %d\n", (stl_sort_end - stl_sort_begin));
    printf("=====================================\n");
 
    for (int i = 0; i < arr_size; ++i) {
        if (qs[i] != stls[i] || ms[i] != stls[i]) {
            printf("Error\n");
        }
    }
 
    return 0;
}


Hash

Data Structure 2019. 1. 22. 22:59



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <stdio.h>
#include <map>
#include <algorithm>
#include "Windows.h"
using namespace std;
 
const int PN = 23;
const int HASH_SIZE = 10000;
 
int table[HASH_SIZE][50];
int hash_size = 0;
char hash_raw[30000][100];
 
char input[30000][100];
map<char*, int> test;
 
unsigned int get_key(char str[]) {
    unsigned int key = 0, p = 1;
 
    for (int i = 0; str[i] != 0; ++i) {
        key += (str[i] * p);
        p *= PN;
    }
 
    return (key % HASH_SIZE);
}
 
int my_strcamp(char a[], char b[]) {
    int i = 0, j = 0;
    while (a[i]) {
        if (a[i++] != b[j++]) {
            --i, --j;
            break;
        }
    }
    return (a[i] - b[j]);
}
 
int contain(char str[]) {
    unsigned int key = get_key(str);
    int size = table[key][0];
    for (int i = 1; i <= size; ++i) {
        int pos = table[key][i];
        if (my_strcamp(hash_raw[pos], str) == 0) {
            return pos;
        }
    }
    return -1;
}
 
void add(char str[]) {
    int len = 0;
    for (len = 0; str[len] != 0; ++len) {
        hash_raw[hash_size][len] = str[len];
    }
    hash_raw[hash_size][len] = 0;
 
    unsigned int key = get_key(str);
    int& size = table[key][0];
    table[key][++size] = hash_size;
 
    ++hash_size;
}
 
bool remove(char str[]) {
    unsigned int key = get_key(str);
    int& size = table[key][0];
    for (int i = 1; i <= size; ++i) {
        int pos = table[key][i];
        if (my_strcamp(hash_raw[pos], str) == 0) {
            for (int j = i + 1; j <= size; ++j) {
                table[key][j - 1] = table[key][j];
            }
            --size;
            return true;
        }
    }
    return false;
}
 
int make_int(int min, int max) {
    return (rand() % (max - min)) + min;
}
 
char make_char() {
    int val = rand() % 52;
    if (val < 26) {
        return static_cast<char>('a' + val);
    }
    return static_cast<char>('A' + val - 26);
}
 
int main()
{
    for (int i = 0; i < 30000; ++i) {
        int len = make_int(10, 100);
        for (int j = 0; j < len; ++j) {
            input[i][j] = make_char();
        }
        input[i][len] = 0;
 
        if (contain(input[i]) == -1) {
            add(input[i]);
        }
        test[input[i]] = i;
 
 
        if (i > 20000) {
            int cmd = make_int(0, 5);
            int index = make_int(0, i);
            if (cmd == 0) {
                if (contain(input[index]) != -1) {
                    remove(input[index]);
                }
 
                test.erase(input[index]);
            }
            if (cmd == 1) {
                int my_pos = contain(input[index]);
                map<char*, int>::iterator iter = test.find(input[index]);
                int stl_pos = -1;
                if (iter != test.end()) {
                    stl_pos = iter->second;
                }
 
                if (my_pos != stl_pos) {
                    printf("find error!!!\n");
                }
            }
        }
    }
 
    int my_hash_size = 0;
    for (int i = 0; i < HASH_SIZE; ++i) {
        my_hash_size += table[i][0];
    }
 
    if (my_hash_size != test.size()) {
        printf("remove error!!!\n");
    }
 
    return 0;
}


Heap

Data Structure 2019. 1. 11. 22:36





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <stdio.h>
#include <algorithm>
#include "Windows.h"
using namespace std;
 
int heap_size;
int heap[10000];
 
void push(int data) {
    int target = heap_size + 1;
    while (target != 1 && heap[target / 2] < data) {
        heap[target] = heap[target / 2];
        target /= 2;
    }
    heap[target] = data;
    ++heap_size;
}
 
void pop() {
    int parent = 1, child = 2;
    int temp = heap[heap_size];
    while (child < heap_size) {
        if (child + 1 < heap_size && heap[child] < heap[child + 1]) {
            ++child;
        }
        if (temp >= heap[child]) {
            break;
        }
        heap[parent] = heap[child];
        parent = child;
        child *= 2;
    }
    heap[parent] = temp;
    --heap_size;
}
 
bool comp(int a, int b) {
    return (a > b);
}
 
int main()
{
    int a[10000], b[10000];
    for (int i = 0; i < 9999; ++i) {
        a[i] = rand() % 10000;
        b[i] = a[i];
    }
    sort(a, a + 9999, comp);
 
    for (int i = 0; i < 9999; ++i) {
        push(b[i]);
    }
 
    for (int i = 0; i < 9999; ++i) {
        if (a[i] != heap[1]) {
            printf("not heap!!!\n");
        }
        pop();
    }
 
    return 0;
}